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Abstract

We present approximation algorithms and heuristics for several variations of terrain guarding problems, where we need
to guard a terrain in its entirety by a minimum number of guards. Terrain guarding has applications in telecommunications,
namely in the setting up of antenna networks for wireless communication. Our approximation algorithms transform the terrain
guarding instance into a MINIMUM SET COVER instance, which is then solved by the standard greedy approximation algorithm
[J. Comput. System Sci. 9 (1974) 256–278]. The approximation algorithms achieve approximation ratios of O(logn), where
n is the number of vertices in the input terrain. We also briefly discuss some heuristic approaches for solving other variations
of terrain guarding problems, for which no approximation algorithms are known. These heuristic approaches do not guarantee
non-trivial approximation ratios but may still yield good solutions. 2002 Published by Elsevier Science B.V.
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1. Introduction and problem definition

The cost of a telecommunications network largely
depends on the number of nodes. Typically, a network
for wireless communication consists of transmission
stations (antennas) that receive and send signals. The
set of antennas needs to cover a specific geographic
region in its entirety. Putting up antennas is very
costly, and hence telecommunication companies —
among other objectives — aim at placing a minimum
number of antennas that cover a given region such
that communication between any two points in a
given region is possible. While the traditional way of
erecting antenna towers on the ground is still most-
widely used, a novel approach is to put antennas up in

✩ The results in this paper are part of the author’s PhD thesis [5].
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the air: Balloons float at a certain fixed height and are
held in geo-stationary position.

Communication between two points is possible, if
at each point a mobile transmitter (such as a cellu-
lar phone) can communicate with an antenna in the
network. Thus, in our abstract problem, each point in
the region must becovered by at least one antenna.
Communication between antennas and mobile trans-
mitters is by means of electromagnetic wave propaga-
tion at high frequencies. Current frequencies are 900
and 1800 MHz in Europe and 1900 MHz in the US and
the trend points towards frequencies even higher in
the GHz-range. A straightline-of-sight approach mod-
els reality with sufficient precision in these frequency
ranges, since the effects of reflection and refraction be-
come negligible. Thus, we require each point in the
region to bevisible from at least one antenna in the
network.
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Since visibility between two points in a region
is determined by the topology of the region to be
covered, the geometric model used to model the region
becomes important. In the geometric model, we call
the region to be covered aterrain, which is described
as a finite set of points in the plane together with
a triangulation, and a height value associated with
each point (this is also called atriangulated irregular
network (TIN), see, e.g., [12]). Visibility on a terrain
is defined on the basis of straightlines-of-sight: Two
points above the terrain are mutually visible if their
connecting straight line segment runs entirely above
(or on) the terrain.

It turns out that the terrain covering problem can
be seen to belong to quite a large family of geometric
covering and guarding problems that have been stud-
ied for more than two decades. Victor Klee started the
study by posing the following problem, which today is
known as theoriginal art gallery problem: How many
guards are needed to see every point in the interior of
an art gallery? In the abstract version of this problem,
the input is a simple polygon with or without holes in
the plane, representing the floor plan of the art gallery,
and visibility is of course limited to the interior of the
polygon. A simple polygon with or without holes is
given by its ordered sequence of vertices on the outer
boundary, together with an ordered sequence of ver-
tices for each hole (if it contains holes). Two points
in the polygonesee each other if the straight line seg-
ment connecting the two points does not intersect the
exterior (and the holes) of the polygon.

We now formally define the problems we are
studying.

Definition 1. Let T be a simple polygon with holes.
The problem MINIMUM VERTEX (POINT) GUARD

ON POLYGON is the problem of finding a minimum
subsetS of the set of vertices ofT (a minimum setS
of points in the interior ofT ) such that each point on
the boundary and in the interior ofT is visible from at
least one point inS.

As usual, a minimum subset of a set denotes a subset
of smallest cardinality among all candidate subsets.

Definition 2. Let T be a terrain. The problem MINI -
MUM VERTEX (POINT) GUARD ON TERRAIN is the
problem of finding a minimum subsetS of vertices of

T (minimum set of points onT ) such that every point
on T is visible from a point inS. The points inS are
calledguard points.

Definition 3. Let T be a terrain, and leth be a height
value, such that the planez = h lies entirely above
(or partially on)T . The problem MINIMUM FIXED

HEIGHT GUARD ON TERRAIN is the problem of
finding a minimum setS of points in space at heighth

such that every point onT is visible from a point inS.

We define additional variations, which will allow us
to cut running times significantly, while still yielding
good solutions. These variations have the additional
restriction that each triangle in the triangulation ofT

must be visible from a single point in the guard set
S; that is, guards are not allowed to cooperatively see
a triangle inT ’s triangulation, contrary to the prob-
lem versions above. We denote these problem ver-
sions by MINIMUM VERTEX/POINT/FIXED HEIGHT

GUARD ON TERRAIN WITH TRIANGLE RESTRIC-
TION. In most practical applications, the triangles of
the triangulation of a given terrain are very small com-
pared to the overall size of the terrain. Thus, a single
guard is very likely to cover a large number of triangles
completely and only a small number only partially. It,
therefore, seems reasonable to ignore the partially cov-
ered triangles, if we achieve a significant reduction in
running time.

In our approximation algorithms, we first express
the terrain guarding problem as an instance of MINI -
MUM SET COVER, which is defined as follows:

Definition 4. Let E = {e1, . . . , en} be a finite set
(called universe) of elements, and letS = {s1, . . . , sm}
be a collection of subsets ofE, i.e.,sj ⊆ E for 1 � j �
m. The problem SET COVER is the problem of finding
a minimum subsetS′ ⊆ S such that every element
ei ∈ E, 1� i � n belongs to at least one subset inS′.
For ease of discussion, let the elements inE and the
subsets inS have an arbitrary, but fixed order, denoted
by the index.

A simple greedy algorithm for MINIMUM SET

COVER, which consists of recursively adding to the
solution a set that contains a maximum number of
elements not yet covered by the current solution,
achieves an approximation ratio of lnn + 1 [11]. It
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turns out that this approximation algorithm is the best
possible (up to low-order terms) [1,9].

There are several surveys on art galleries [14–16].
Many upper and lower bounds on the number of
necessary guards are known for different guarding
problems, while comparatively few results are known
on the computational complexity of these guarding
problems.

It is known that guarding a given polygon is
NP-hard in all versions, i.e., MINIMUM VERTEX

(POINT) GUARD ON POLYGON is NP-hard [13].
Moreover, MINIMUM VERTEX (POINT) GUARD ON

POLYGON is APX-hard [8] for polygons without
holes, which means that there exists a constantε > 0
such that no polynomial time algorithm can achieve
an approximation ratio of 1+ ε. MINIMUM VERTEX

(POINT) GUARD ON POLYGON as well as MINIMUM

FIXED HEIGHT/VERTEX/POINT GUARD ON TER-
RAIN (WITH TRIANGLE RESTRICTION) cannot be
approximated with an approximation ratio of O(logn)

[5] (or [7,6]). An approximation algorithms for MINI -
MUM VERTEX GUARD ON POLYGON, which achieves
an approximation ratio of O(logn), is also known [10].

In this report, we propose approximation algorithms
for MINIMUM VERTEX GUARD ON TERRAIN (WITH

TRIANGLE RESTRICTION) and for MINIMUM FIXED

HEIGHT/POINT GUARD ON TERRAIN WITH TRIAN-
GLE RESTRICTION, which achieve logarithmic ap-
proximation ratios. These approximation algorithms
are thus optimal up to a constant factor. All our
approximation algorithms first transform the guard-
ing problem into a MINIMUM SET COVER problem,
which is then solved by the simple greedy approxima-
tion algorithm mentioned above.

For the remaining terrain guarding problem, i.e.,
MINIMUM FIXED HEIGHT/POINT GUARD ON TER-
RAIN as well as for MINIMUM POINT GUARD ON

POLYGON, we briefly outline some heuristic ap-
proaches, which are not guaranteed to achieve any
non-trivial approximation ratios, but may still be very
useful and good in practice.

This report is structured as follows: In Section 2 we
repeat the concept for the approximation algorithm for
guarding polygons as proposed in [10]. We general-
ize the concept of the algorithm for polygons to ter-
rains and obtain our approximation algorithms for ter-
rain guarding problems in Section 3. Section 4 con-

tains heuristic approaches for the problems discussed.
Section 5 contains concluding remarks.

2. Approximating polygon guarding problems

It is known that the problem MINIMUM VERTEX

GUARD ON POLYGON is approximable with a ratio
of O(logn), where n is the number of polygon
vertices [10]. As we will employ similar concepts for
our algorithms for guarding terrains, we briefly outline
this algorithm.

The approximation algorithm partitions the interior
of the input polygon into “basic” convex components
that are either completely visible or invisible from
any vertex guard. These basic convex components
are obtained by drawing lines through all pairs of
vertices of the polygon. Each of the O(n2) lines
intersects at most O(n2) lines, which gives a total of
O(n4) intersection points. Each intersection point is
the vertex of a convex component that is minimum
(in the convex component) with respect to they-axis
(where they-axis is arbitrary but fixed). Therefore, we
have O(n4) basic convex components.

The problem is then transformed into an instance
of MINIMUM SET COVER with an element for each
convex component and a set for each polygon vertex
(or polygon edge). The sets contain as elements
exactly the convex components that are visible from
the vertex.

MINIMUM SET COVER can be approximated with
an approximation ratio that is logarithmic in the
number of elements of the MINIMUM SET COVER

instance. Since we have a polynomial number of
elements, the approximation ratio that the greedy
algorithm achieves remains logarithmic.

3. Approximating terrain guarding problems

We generalize the notion of basic convex compo-
nents introduced in Section 2 to terrains. This will help
us obtain approximation algorithms for several terrain
guarding problems. We obtain convex components by
constructing planes through vertices and line segments
of the terrain. More precisely, letvi , vj and vk be
vertices in a terrainT , where the verticesvi andvj

are neighbors, i.e., the two vertices are connected by
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a line segment in the triangulation of the terrain. For
each line segmentvi , vj and each vertexvk on the
terrain, we construct a plane that contains the line seg-
ment fromvi to vj and the vertexvk . Since there are
only O(n) line segments in the triangulation ofT , this
gives a total of O(n2) planes. These planes partition
space into three-dimensionalcells, which in turn con-
tain two-dimensionalfaces that are defined by (one-
dimensional)points, which are the intersection points
of three planes. We call this partition thearrangement
of T . The arrangement consists of O(n6) intersection
points, faces, and cells that can be computed in time
O(n6). 1

Lemma 1. Let C be a cell in the arrangement of a
terrain T . Then, every point in the interior of cell C

(i.e., any point not on the faces or intersection points
that also belong to C) sees exactly the same vertices
of terrain T as any other point in the interior of C.

Proof. Let a, b be two points in the interior ofC
and letvi be a vertex on the terrainT . Assume by
contradiction thatb seesvi , while a does not seevi .
Then, leta′ be the intersection point of the terrainT
and the line segment from pointa to vertexvi that is
closest to pointa. Sincea does not seevi , there always
must be such a pointa′ that blocks the view. Letb′ be
the intersection point of the line segment fromb to vi

and the plane defined by the triangle of the terrain, on
which pointa′ lies. Sinceb seesvi , b′ cannot lie on
the terrain, and in particular it cannot lie on the same
triangle asa′. Consider the plane through vertexvi and
the line segment of the terrain that intersects with the
line segment froma′ to b′. This plane is a part of the
arrangement, but it cuts cellC apart, as it separates
pointsa andb from each other. Therefore, cellC is
not a cell of the arrangement.✷
Lemma 2. Let C be a cell in the arrangement of
a terrain T . Then, every point in the interior of
cell C sees exactly the same line segments of the
triangulation of terrain T completely as any other
point in the interior of C.

1 These numbers are obtained easily using standard analysis of
properties of arrangements that can be found in any textbook on
computational geometry such as [2].

Proof. Let a, b be two points in the interior ofC
and letc be the line segment in the triangulation of
T with verticesvi and vj as endpoints. Assume by
contradiction thatb seesc, while a does not seec
completely. Sincea and b are both in cellC we
can assume by Lemma 1 that they both see the two
verticesvi and vj . Consider the points on the line
segment from pointa to point b as we move froma

towardsb. Sincea does not see segmentc completely,
but b does, there must be a pointp from wherec

is completely visible for the first time (as we move
along the line segment froma to b). Remember that
by Lemma 1 verticesvi andvj are always visible as
we move. Therefore, by definition of pointp, there
must be a terrain vertexvk (other thatvi andvj ) on
the plane defined byvi , vj andp. Otherwise,p would
not be the first point to completely see segmentc,
or not all points would see verticesvi and vj . The
plane defined byvi , vj and p is equal to the plane
defined byvi , vj andvk . This plane, however, is part of
the arrangement, sincevi andvj are neighbors in the
triangulation of terrainT ; it separates pointsa andb,
and therefore,C is not a cell of the arrangement.✷
Lemma 3. Let F be a face in the arrangement of a
terrain T . Then, every point in the interior of face F

(i.e., points not on the boundary of F ) sees exactly the
same vertices and the same complete line segments of
the triangulation of terrain T as any other point in the
interior of F .

Proof. The proofs for the vertices and the line seg-
ments are the same as the proofs for Lemmas 1 and 2,
respectively. ✷

Before we propose a first approximation algorithm,
let us mention a few elementary facts:
• For each cell or face of the arrangement of a

terrain T , the intersection points that are on the
boundary of the cell or face see all the vertices
and line segments in the triangulation ofT that any
other point in the interior of the cell or face sees.
The intersection points may, however, see a few
additional vertices and line segments.

• For any pointp in space and any vertexvi on
terrain T , we determine ifp seesvi as follows:
Compute all line segments in the triangulation ofT

that intersect the line fromp to vi in the orthogonal,
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two-dimensional projection onto thex–y plane.
Then, check for each such segment whether the line
from p to vi is above or below the segment (with
respect to thez-axis). Pointp sees vertexvi , exactly
if each segment is below the line fromp to vi . This
can be computed in time O(n).

• For any pointp in space and any line segment in
the triangulation ofT with endpointsvi andvj , we
determine ifp completely sees the line segment as
follows: We first determine whetherp sees the two
verticesvi andvj . If this is affirmative, we check for
each vertex on the terrain, which lies in the triangle
vi , vj , p in its orthogonal projection onto thex–
y plane, whether the vertex lies above or below
the trianglevi , vj , p (with respect to thez-axis).
Pointp completely sees the segment fromvi to vj ,
exactly if each such vertex lies below the triangle.
This can be computed in time O(n).

• We can determine if a point in space completely
sees a triangle on the terrain by determining if it
completely sees all three sides of the triangle. This
takes O(n) time.
We are now ready to prove approximation results.

Theorem 1. MINIMUM FIXED HEIGHT GUARD ON

TERRAIN WITH TRIANGLE RESTRICTION can be
approximated by a polynomial time algorithm with a
ratio of O(logn), where n is the number of terrain
vertices.

Proof. Consider the intersection of the arrangement
of terrainT with the plane atz = h. This intersection is
itself a two-dimensional arrangement. Since we know
from Lemmas 2 and 3 that all interior points in a
cell or in a face see the same line segments in the
triangulation ofT and the boundary points may see a
few additional line segments, it suffices to determine at
each of the O(n6) intersection points (i.e., points in the
two-dimensional arrangement at heighth, where two
lines cross), which triangles it sees completely. This
can be done in O(n6 · n · n) = O(n8) time.

We can now interpret this information as a MIN-
IMUM SET COVER instance, where each triangle in
the terrain is an element and each intersection point
defines a set, namely the set of triangles that it sees
completely. This instance consists of O(n) elements
and O(n6) different sets. We now solve the MINIMUM

SET COVER instance approximately, by applying the

greedy algorithm for MINIMUM SET COVER. The
greedy algorithm runs in time O(n8) as does the whole
approximation algorithm. It achieves an approxima-
tion ratio of O(logn). ✷
Theorem 2. MINIMUM VERTEX GUARD ON TER-
RAIN WITH TRIANGLE RESTRICTIONcan be approx-
imated by a polynomial time algorithm with a ratio of
O(logn), where n is the number of terrain vertices.

Proof. We again build a MINIMUM SET COVER

instance, where each triangle in the terrain is an
element and each vertex defines a set, i.e., the set of
triangles that it sees completely. In order to do this,
we have to computen sets, each of which takes time
O(n2). This gives a total construction time of O(n3).

Solving the MINIMUM SET COVER instance by
applying the greedy algorithm takes time O(n3) and
achieves an approximation ratio of O(logn). ✷
Theorem 3. MINIMUM VERTEX GUARD ON TER-
RAIN can be approximated by a polynomial time algo-
rithm with a ratio of O(logn), where n is the number
of terrain vertices.

Proof. Consider the intersection of the arrangement
of T with the terrainT itself. This intersection parti-
tions all triangles of the terrain into two-dimensional
cells. Within such a cell, all points see the same set of
vertices according to Lemma 3. The “inverse” holds
as well: Any vertex in the terrain either sees such
cell completely or not at all (except for points on the
boundary of the cell). There are O(n6) such cells that
can be computed in time O(n6). Note that we can de-
termine in time O(n) whether a vertex sees a cell, by
testing whether it sees an interior point of the cell.2

We construct a MINIMUM SET COVER instance,
where each cell in the terrain, which results from
intersecting the arrangement ofT with T itself, is an
element and each vertex defines a set, i.e., the set of
all cells that it sees completely. We have to computen

sets, each of which takes time O(n7). This gives a total
construction time of O(n8).

We again solve the MINIMUM SET COVER in-
stance by applying the greedy algorithm. This takes

2 We can find an interior point by drawing two arbitrary diagonals
and taking the intersection or — in the case of a triangle — by
computing its center of gravity.
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time O(n8) and achieves an approximation ratio of
O(logn). ✷
Theorem 4. MINIMUM POINT GUARD ON TER-
RAIN WITH TRIANGLE RESTRICTIONcan be approx-
imated by a polynomial time algorithm with a ratio of
O(logn), where n is the number of terrain vertices.

Proof. Consider once again the intersection of the
arrangement ofT with the terrainT itself that parti-
tions all triangles of the terrain into two-dimensional
cells. Within such a cell, all points see the same set
of line segments of the triangulation ofT according
to Lemma 3; they also all see the same set of trian-
gles on the terrain. Therefore, it suffices to place point
guards at intersection points (i.e., points in on the ter-
rain, where two lines of the arrangement cross).

We construct a MINIMUM SET COVER instance,
where each triangle in the triangulation of the terrain
is an element and each intersection point on the terrain
defines a set, namely the set of all triangles that it sees
completely. We have to compute O(n6) sets, each of
which takes time O(n2). This gives a total construction
time of O(n8).

We again solve the MINIMUM SET COVER in-
stance by applying the greedy algorithm. This takes
time O(n8) and achieves an approximation ratio of
O(logn). ✷

In all the approximation algorithms proposed for
terrain guarding problems in the proofs of the previous
lemmas, we have focused on the polynomiality of
these algorithms. It is possible that the running times
of our approximation algorithms may be improved by
adopting algorithms that compute the horizon from a
point in the terrain [4].

4. Heuristic approaches for guarding problems

Unfortunately, no sophisticated approximation al-
gorithms are known for MINIMUM POINT GUARD

ON POLYGON (TERRAIN) and MINIMUM FIXED

HEIGHT GUARD ON TERRAIN. These problems seem
to defy all attempts to somehow discretize the space
of all possible guard positions. In fact, it is not even
known whether the corresponding decision problems

are in NP. However, we can come up with several ap-
proaches to find good solutions for these problems,
even if these solutions are not provably good.

A trivial approximation algorithm for MINIMUM

POINT GUARD ON POLYGON simply returns all
n vertices as a (feasible) solution. This algorithm
achieves an approximation ratio ofn, because at least
one guard is needed in each feasible solution. For
input polygons without holes, we can improve this
ratio slightly by applying an algorithm that places

n/3� guards that together see all of the interior
of the polygon; this could be done in a similar
way for input polygons with holes (see [16] for
details). However, the approximation ratio remains
O(n). Corresponding trivial approximation algorithms
for MINIMUM POINT (FIXED HEIGHT) GUARD ON

TERRAIN simply place a guard at each vertex (above
each vertex at heighth). The resulting approximation
ratios of n can be slightly improved by a constant
factor by applying an algorithm [3] that always places

3n/5� guards on a terrain that together see all
of the terrain.3 Alternatively, we can reduce the
approximation ratio for MINIMUM FIXED HEIGHT

GUARD ON TERRAIN to n/2 by determining whether
heighth is large enough such that the whole terrain can
be seen from one single guard at some point at height
h. The position of such a guard can be computed
in linear time using linear programming (mentioned
in [17] as the problem of computing thelowest watch
tower). An approximation algorithm for MINIMUM

FIXED HEIGHT GUARD ON TERRAIN could return
the position of such a guard and, if no such guard
exists, proceed with the trivial algorithm. However, the
approximation ratios remain O(n).

A better approach for MINIMUM POINT GUARD

ON POLYGON returns the (suboptimum) solution found
for the corresponding vertex guard problem on the
same input polygon. Likewise, for MINIMUM POINT

(FIXED HEIGHT) GUARD ON TERRAIN, we solve the
corresponding problems with triangle restriction on
the same input terrain.

In a third approach for solving MINIMUM POINT

GUARD ON POLYGON we lay a grid of polynomial

3 The algorithm works for the fixed height guard problem as well,
because we can move each guard of the solution straight up to the
plane at heighth. This operation increases the visibility area of the
guard.
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size over the polygon and then compute the area of vis-
ibility for a guard at each grid point. This can be done
in polynomial time, since it corresponds to construct-
ing convex components. Here, however, we obtain the
convex components by drawing lines from each grid
point through each polygon vertex. We then solve the
resulting MINIMUM SET COVER instance with sets
for each grid point and elements for each convex com-
ponent using the standard algorithm. This approach
can by used for terrains as well: We just lay a regular
polynomial density grid onto the plane at heighth or
onto the terrain itself and construct a MINIMUM SET

COVER instance for the MINIMUM FIXED HEIGHT

(POINT) GUARD ON TERRAIN problem. Despite of all
this extra effort, the approximation ratios remain O(n)

in all cases, to the best of our knowledge.

5. Conclusion

We have presented approximation algorithms that
achieve logarithmic approximation ratios for the prob-
lems MINIMUM VERTEX GUARD ON TERRAIN (WITH

TRIANGLE RESTRICTION) and MINIMUM FIXED

HEIGHT/POINT GUARD ON TERRAIN WITH TRIAN-
GLE RESTRICTION. Furthermore, we have outlined a
few heuristic approaches to solving MINIMUM FIXED

HEIGHT/POINT GUARD ON TERRAIN and MINI -
MUM POINT GUARD ON POLYGON. It is of course of
great interest and an important open problem whether
heuristic approaches are all we can do to solve MIN-
IMUM FIXED HEIGHT/POINT GUARD ON TERRAIN

or whether there exist approximation algorithms that
achieve approximation ratios of o(n) for these prob-
lems.
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